Aussie AI
LNS Mathematical and Algorithmic Theory
-
Book Excerpt from "Generative AI in C++"
-
by David Spuler, Ph.D.
LNS Mathematical and Algorithmic Theory
Papers on the mathematical basis of the Logarithmic Number System (LNS) and its applied algorithms in theory include:
- Behrooz Parhami, 2010, Computer Arithmetic: Algorithms and Hardware Designs, 2010, Oxford University Press, New York, NY, https://web.ece.ucsb.edu/~parhami/text_comp_arit.htm, https://books.google.com.au/books/about/Computer_Arithmetic.html?id=tEo_AQAAIAAJ&redir_esc=y
- Molahosseini AS, De Sousa LS, Chang C-H, 2017, Embedded systems design with special arithmetic and number systems, Springer. Book on Amazon: https://www.amazon.com/Embedded-Systems-Design-Special-Arithmetic-ebook/dp/B06XRVG3YF/, https://doi.org/10.1007/978-3-319-49742-6, https://link.springer.com/book/10.1007/978-3-319-49742-6 (A text that contains multiple papers on LNS and RNS.)
- B. Parhami, 2020, Computing with logarithmic number system arithmetic: Implementation methods and performance benefits, Computers & Electrical Engineering, vol. 87, p. 106800, 2020. https://www.sciencedirect.com/science/article/abs/pii/S0045790620306534
- Arnold, M.G., Bailey, T.A., Cowles, J.R., Winkel, M.D., 1992, Applying features of the IEEE 754 to sign/logarithm arithmetic, IEEE Transactions on Computers 41, 1040–1050 (1992) https://ieeexplore.ieee.org/document/156547
- Paliouras, V., Stouraitis, T., 2001, Low-power properties of the Logarithmic Number System, Proceedings of 15th Symposium on Computer Arithmetic (ARITH15), Vail, CO, June 2001, pp. 229–236 (2001) https://ieeexplore.ieee.org/document/930124
- Paliouras, V., Stouraitis, T., 2000, Logarithmic number system for low-power arithmetic, In: Soudris, D.J., Pirsch, P., Barke, E. (eds.) PATMOS 2000. LNCS, vol. 1918, pp. 285–294. Springer, Heidelberg (2000), https://link.springer.com/chapter/10.1007/3-540-45373-3_30
- T. Stouraitis, 1986, Logarithmic Number System: Theory analysis and design, University of Florida, Ph.D. dissertation, University of Florida ProQuest Dissertations Publishing, 1986. 8704221 https://www.proquest.com/openview/0f48dddc19ec62058062ae1b32ee981d/1, https://openlibrary.org/books/OL25923701M/Logarithmic_number_system_theory_analysis_and_design
- F. J. Taylor, 1985, A hybrid floating-point logarithmic number system processor, IEEE Trans. Circuits Syst., vol. CAS-32, pp. 92-95, Jan. 1985. https://ieeexplore.ieee.org/abstract/document/1085588
- M. L. Frey and F. J. Taylor, 1985, A table reduction technique for logarithmically architected digital filters, IEEE Trans. Acoust Speech Signal Processing, vol. ASSP-33, pp. 718-719, June 1985. https://ieeexplore.ieee.org/document/1164597
- E. E. Swartzlander, D. V. S. Chandra, H. T. Nagle and S. A. Starks, 1983, Sign/logarithm arithmetic for FFT implementation, IEEE Trans. Comput., vol. C-32, pp. 526-534, June 1983. https://ieeexplore.ieee.org/document/1676274
- G. L. Sicuranza, 1983, On efficient implementations of 2-D digital filters using logarithmic number systems, IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-31, pp. 877-885, Aug. 1983. https://ieeexplore.ieee.org/document/1164149 (Algorithms for LNS arithmetic.)
- M. L. Frey and F. J. Taylor, 1985, A table reduction technique for logarithmically architected digital filters, IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-33, pp. 719-719, June 1985. https://ieeexplore.ieee.org/document/1164597 (Reducing lookup table sizes for LNS.)
- H. Fu, O. Mencer and W. Luk, 2010, FPGA Designs with Optimized Logarithmic Arithmetic, IEEE Trans. Computers, vol. 59, no. 7, pp. 1000-1006, July 2010. https://ieeexplore.ieee.org/document/5416693 (LNS on FPGAs.)
- Chih-Wei Liu; Shih-Hao Ou; Kuo-Chiang Chang; Tzung-Ching Lin; Shin-Kai Chen, 2016, A Low-Error, Cost-Efficient Design Procedure for Evaluating Logarithms to Be Used in a Logarithmic Arithmetic Processor, IEEE Trans. Computers (April 2016) https://ieeexplore.ieee.org/document/7118135 (Algorithms for the initial logarithmic conversion from a floating-point into an LNS representation.)
- H. L. Garner, 1965, Number Systems and Arithmetic, in Advances in Computers, Vol. 6, F. L. Alt and M. Rubinoff (eds.), Academic Press, 1965. https://www.sciencedirect.com/science/article/abs/pii/S0065245808604209
- N. G. Kingsbury and P. J. W. Rayner, 1971, Digital Filtering Using Logarithmic Arithmetic, Electronics Letters, Vol. 7, pp. 56-58, 1971. https://digital-library.theiet.org/content/journals/10.1049/el_19710039 (Early paper on logarithmic numbers.)
- Tso-Bing Juang, Pramod Kumar Meher and Kai-Shiang Jan, 2011, High-Performance Logarithmic Converters Using Novel Two-Region Bit-Level Manipulation Schemes, Proc. of VLSI-DAT (VLSI Symposium on Design, Automation, and Testing), pp. 390-393, April 2011. https://ieeexplore.ieee.org/document/5783555
- Tso-Bing Juang, Han-Lung Kuo and Kai-Shiang Jan, 2016, Lower-Error and Area-Efficient Antilogarithmic Converters with Bit-Correction Schemes, Journal of the Chinese Institute of Engineers, Vol. 39, No. 1, pp. 57-63, Jan. 2016. https://www.tandfonline.com/doi/abs/10.1080/02533839.2015.1070692?journalCode=tcie20
- Ying Wu, Chuangtao Chen, Weihua Xiao, Xuan Wang, Chenyi Wen, Jie Han, Xunzhao Yin, Weikang Qian, Cheng Zhuo, 2023, A Survey on Approximate Multiplier Designs for Energy Efficiency: From Algorithms to Circuits, ACM Transactions on Design Automation of Electronic Systems, 2023. https://doi.org/10.1145/3610291, https://arxiv.org/abs/2301.12181 (Extensive survey of many approximate multiplication algorithms.)
- Patrick Robertson, Emmanuelle Villebrun, Peter Hoeher, et al., 1995, A comparison of optimal and sub-optimal map decoding algorithms operating in the log domain, in IEEE International Conference on Communications, 1995. https://ieeexplore.ieee.org/document/524253
- Mark G. Arnold, 2014, LNS References, XLNS Research, http://www.xlnsresearch.com/home.htm (An exhaustive list of LNS research articles up to around 2014.)
- N. G. Kingsbury and P .J. W. Rayner, 1971, Digital Filtering Using Logarithmic Arithmetic, Electronics Letters, 7, pp 56-58, 1971, https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004235144
- F. Albu; J. Kadlec; N. Coleman; A. Fagan, 2002, The Gauss-Seidel fast affine projection algorithm, IEEE Workshop on Signal Processing Systems, https://ieeexplore.ieee.org/abstract/document/1049694/, PDF: https://www.academia.edu/download/32934948/sips2002.pdf (Simplistic coverage of LNS addition with just exponentiation.)
For more research papers on computational theory for LNS models, see https://www.aussieai.com/research/logarithmic#theory.
• Next: • Up: Table of Contents |
The new AI programming book by Aussie AI co-founders:
Get your copy from Amazon: Generative AI in C++ |